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Abstract. 

In the financial sector, volatility is one of the important aspects that need special attention as far as 

risk management is concerned. A multivariate GARCH model is presented together with its 

univariate specifications. This paper reviews the substantial literature on specifications, estimation, 

and evaluation of the MGARCH models. The quasi maximum likelihood technique is expanded to 

allow for estimation of GARCH-type models and is applied to the MGARCH models. Therefore, 

empirical results suggest that the best multivariate GARCH model is revealed to be the DCC model 

which dominates the others with respect to the likelihood values. 

Keywords: Multivariate GARCH, Quasi maximum likelihood, Univariate GARCH 

 

1. Introduction 

 

Changes in volatility over time can be modelled using many approaches. The main characteristic of 

any financial asset is its return, which is typically considered to be a random variable.The asset’s 

volatility that describes the spread of outcomes of this variable, plays the principal role in 

numerous financial applications. We often use it to estimate the value of market risk and we used it 

in this work for portfolio management. Then, the main purpose of this paper is to allow financial 

institutions not only to know the current value of the volatility of the managed assets, but also to be 

able to estimate their future values. However, an understanding of linkages and volatility 

transmission in stock market returns and correlation of such returns will help investors or fund 

managers better manage their investment portfolios. Indeed, with the crisis of confidence in risk 

management and requirements of regulators, there is a requirement for GARCH modeling to take 

explicitly into account multivariate issues. Nevertheless, employing a multivariate framework has 

always been a challenge concerning robust models and their estimation problems while considering 

the high number of parameters. Hence, the generalizations to multivariate series can be difficult to 

estimate and interpret.Another approach is to model volatility as an unobserved stochastic process 

which is subject of next results. A number of papers have documented the advantage of modelling 

stochastic volatility including Harvey et Al (1994) who used the Quasi Maximum Likelihood 

(QML) methods. Although there have been already some practical and successful applications of 

multivariate GARCH models, the theoretical literature on univariate GARCH models has 

developed significantly over the last few years.Yet the MGARCH models remain more difficult to 

estimate, although estimation is already an issue for the univariate GARCH models, it is believed 

that estimation is more of an issue for MGARCH models. Moreover, as a result of difficulties with 

parameter estimation, the computation of model comparison criteria becomes extensive and 
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demanding. Also, compared to the multitude alternative specifications in univariate GARCH 

models, only a handful of MGARCH model specifications have been studied; this may be among 

the multiple reasons why the MGARCH models have had fewer empirical applications. 

Our interests in Multivariate GARCH models stem from their popularity in analysis of econometric 

and financial market data. Although, it has been shown byHol and Koopman (2002) that in some 

empirical studies Stochastic Volatility models make better forecasts than GARCH models do. In 

GARCH-type models, the conditional variance of returns is assumed to be a deterministic function 

of past returns. There are both economic and econometric reasons why multivariate volatility 

models are important. The knowledge of correlation structures is very important in many financial 

applications, such as asset pricing, optimal portfolio, risk management and asset allocation, so that 

multivariate volatility models are useful for making financial decisions.  Two classes of models 

ARCH and Stochastic Volatility have emerged as the dominant approaches for modelling financial 

volatility. One of the main objectives of the study of time series is therefore, the forecasting of 

future realizations very often for economic reasons, namely to predict the evolution of a financial 

market.The method developed in this paper for estimation of the MGARCH model is Quasi 

maximum likelihood (QML). The model will be easy to estimate. It implies that volatility is 

modelled as a conditional variance. 

The data used in this study is daily Equity Group and KCB Group Ltd stock prices data from 2010-

2016. The paper is organized as follows. A theoretical survey of univariate GARCH models is 

presented in section 2, while section 3 collects theoretical survey of multivariate GARCH 

framework, containing the following models, VGARCH, Diagonal VGARCH, CCC and DCC. For 

each class of the model, a theoretical review, basic properties and estimation procedure are 

provided. Estimation results are presented in section 4 and section 5 concludes. Technical details 

are given in Appendix A.  

 

2. Generalized ARCH models 

In recent years, a variety of models which apparently forecast changes in stock market prices have 

been introduced, and have played an important role to help people forecast the future. 

The ARCH class of model introduced by Engle (1982) and its generalization, GARCH models by 

Bollerslev (1986) are the most and widely used methodologies in modelling and forecasting 

volatility of financial time series. The literature of ARCH-type models is developed and we used it 

to model and forecast stock indices on NSE. In this chapter we studied different univariate and 

multivariate GARCH models. We also use the QML Estimation which is the common estimate 

method for this type of models. 

2.1 GARCH (p, q) Model 

Bollerslev (1986) introduced an extension of the ARCH model, with the following specifications. 

Let  t t
e


a sequence of i.i.d random variables such that  0,1te N . Here,  t t




is said to 

be GARCH (p, q) process if: 

t t tr     

 2 2 2

1 1

2.1

 

      
 



   

t t t

p q

t i t i j t j
i j

e
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where p and q are the orders of the process,  , i , and 
j  are the parameters to be estimated, 

with 0  ,  0 1, ,i for i p    and  0 1, ,j for j q    . These are the 

necessary conditions for the variance to be positive (CHOO,1999). 

If we let 0q  , the process reduces to an ARCH (p) process and for 0p q  , t is simply a 

white noise. However, the short run dynamics of the resulting volatility process is determined by 

the size of the parameters i and 
j . 

Large ARCH coefficients, i imply that volatility reacts significantly to markets movements, while 

large GARCH coefficients 
j indicate that shocks are persistent on the stocks market (Roberto 

Perrelli,2001). 

We can also write the variance 
2
t of equation (2.1) in terms of the lag-operator L where 

 1L t t    we get: 

     2 2 2 2.2L L       t t t  

Where  

     2 2
1 2 1 2 2.3L L+ L L L L+ L L             p q

p qand

 

Moreover, if   

 2
1 21 0p

px x x      
 

that means if the roots of the characteristic equation lie outside the unit circle and the process 

 t is stationary, then we can write the variance equation of  equation (2.1) as 

 
 
 

 2 2 2.4
L

1 L1 1


 


 


t t  

Now let 
 1 1








 , and i the coefficients of  Li

in the expansion of 
 
 

L

1 L




then, we 

obtain the following transformation of equation (2.4) 

 2 2

1

2.5   





 t i t i
i

 

We have demonstrated that the GARCH (p, q) can also be written as an ARCH   process with a 

fractional structure of the coefficients. This clearly means that t is also a martingale difference 

and the conditional variance of t is given by 

 2

1 1

2.6
1




 
 


  

t p q

i ji j

 

with 
1 1

1
p q

i ji j
 

 
   to ensure the stationarity of the conditional variance. 

GARCH models have been extended by many others authors in order to fill the gaps in the main 

GARCH model. 
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2.2 The symmetric GARCH (1, 1) model 

In the GARCH (1, 1) model, the dynamics show up in the ACF of the squared returns and the ACF 

is like that of the ARMA (1, 1) process. If   is close to one then, the ACF will decay slowly 

indicating a relatively slowly changing conditional variance. In this model, the conditional variance 

is presented as a linear function of its own lags. It is a particular case of  GARCH (p, q) where 

1p q  . The basic univariate GARCH (1, 1) is given by 

   2, 0, 2.7     t t t tmean equation r N  

 2 2 2
1 1 1var 2.8       t t tiance equation

 

where 0  , 1 0  , 1 0  and tr is the return of the asset at time t ,   denotes the average 

return , 2

t is the conditional variance and t is the residual returns as defined in equation (2.4). 

The size of parameters  and  determine the short-run dynamics of the volatility time series and 

if  1 1 1   , then any shock will lead to a permanent change in all future values. Hence, shock 

to the conditional variance is “persistence”. 

The constraints 1 0  and 1 0  in the GARCH (1, 1) are the conditions of positivity of the 

conditional variance (Ser-Huang,2005). 

We can write the variance equation as a stochastic recurrence equation (SRE) by substituting the 

first equation (2.1) in equation (2.8), we obtain 

 

   

2 2 2 2
1 1 1 1 1

2 2
1 1 1 1 2.9

     

   

  

 

  

  

t t t t

t t

e

e
 

This can be written in the following form  

 1 2.10 t t ttX A X B  

where  t and  ,te t  are sequences of i.i.d random variables and with
2

t tX , 

2

1 1t t


 
X , 

2

1 1 1t t
e 


 A , and 

t
B  

These following conditions are sufficient to get a solution  

 E ln
t

B  and    2.11E ln 
t

A  

 and the meaning of   E ln
t

B
is   max 0, ln

t
B . 

By iteration n times we get from equation (2.13) the following expression 

 1 2 1

1

1

1 0 0

t t t t t t

n nn

t t i t j t k t i

i j i

X A A X B B

B B A X A

  



    

  

  

    
 

Conditions given in (2.11) ensure that the middle term on the right hand side converges absolutely 

and the last term disappears as shown below 

 
0

1
ln E ln 0

1

n

t i t

i

A A
n





 



 
and by the strong law of large numbers, this yields  
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00

exp ln 0
n k

t i t i

ii

A A
 



 
  

 


 

Hence, the unique solution of equation (2.10) is given by 

 
1

1 0

2.12


 

 

  
i

t t t i t j

i j

X B B A  

In this case, the sum 
1

t i

i

B






 also converges absolutely almost surely. Then the general solution of 

equation (2.9) becomes 

 2 2

1 1 1

1 1

1 2.13  




 

 
   

 


i

t t

i j

e  

Then, the solution of the GARCH (1, 1) defining equations is given by 

 2

1 1 1

1 1

1 2.14  




 

 
   

 


i

t t t

i j

e e  

 

2.3 The Asymmetric EGARCH model 

This model is based on the logarithmic expression of the conditional variability. We use this model 

to capture the asymmetric responses of the time varying volatility and returns at the same time, 

whenever the parameter values are negative, the model ensures that the conditional variance is 

always positive (Suliman and Winker,2012), this means that there is no need for parameter 

restrictions to impose non negativity. The model was developed by Nelson (1991) and hence, the 

following equation 

 2 2

1 1

ln 2.15ln
  

   


  



 


   

p q

t i i t i

t i j t j

i jt i

 

where  is the asymmetric response parameter. 

The EGARCH (p, q) conditional variance model includes q  past log conditional variances that 

compose the GARCH component polynomial. 

In most empirical cases,  is expected to be negative so that a “negative shock” increases “future 

volatility”, while a positive shock eases the effect on future volatility (Harvey, 2013). Therefore, 

for an EGARCH (1, 1) model where 1p q  given by 

 2 2 1 1

1 1 1

1 1

ln 2.16
2

ln
  

    
 

  



 

  
     

  

t t

t t

t t

 

The left hand side is the log of the conditional variance. The coefficient  is known as the 

asymmetry or leverage term. The presence of leverage effects can be tested by the hypothesis that 

0  , the impact is symmetric if 0  and 22 / 7  . 
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3. Multivariate GARCH Models 

Nowadays, globalization has resulted in higher international economics integration, investors and 

also financial institutions are interested in knowing financial markets integration and how financial 

volatilities together move over time across several markets or assets.Empirical results show that 

working with separate univariate models is much less relevant than multivariate modelling 

framework.The most common application of these class of models is to estimate the volatility 

effects among different markets or assets. In MGARCH models, covariance matrix need by 

definition to be positive definite, therefore imposing positive definiteness is one of the features that 

needs to be taken into account in its specifications. One possibility is to derive conditions under 

which the conditional variance matrices implied by the model are positive definite, but this is often 

not feasible in practice. In this case, an alternative is to formulate the model in a way that positive 

definiteness is implied by the structure (in addition to some simple constraints). 

 

3.1 VGARCH Model 

 

Bollerslev, Engle and Wooldridge (1988) proposed a VGARCH model which is a straightforward 

generalization of the univariate GARCH model. 

Every conditional variance and covariance is function of all lagged conditional variance and 

covariance, as well as lagged squared returns and cross products of returns. The VGARCH is 

defined as follow: 

Definition 3.1 

A VGARCH (p, q) process is a martingale difference sequence X
t
, relative to a given filtration F

t
, 

whose conditional covariance matrix  1
H cov X / F

t t t
 satisfy, t   

       
1 1

'Vech H A X X B H 3.1
  

 

   
p q

t i t i t i i t i

i i

vech vech  

where  .vech is the operator that stocks the lower triangular portion of a symmetric square 

k k  matrix into a   1 / 2 dimk k ensional  vector.  is an 

  1 / 2k k  dimensional vector, A
i
and B

i
are square parameter matrices of order 

  1 / 2k k   

For a purpose of explanation, let’s consider a bivariate VGARCH (1, 1) model with 2k  and we 

denote  2 H
t t

vech  , the equation (2.30) becomes 

2 2 2

11, 1, 11 12 13 1 1 11 12 13 11 1

2 2 2

12, 2, 21 22 23 1 1 2 1 21 22 23 12 1

2 2 2

22, 3, 31 32 33 2 1 31 32 33 22 1

X

X X

X

t t t t

t t t t t t

t t t t

a a a b b b

a a a b b b

a a a b b b

  

   

  

 

  

 

          
          

             
                   

 

We can notice that, from this we immediately see equivalency VEC and VECH representation. 

In VEC representation all the covariance equations appear twice, because there is an equation for 

2

,i j t
 as well as for 

2

ji,t
 . This is because all the off-diagonal terms appear twice within each 

equation. (i.e. both of the terms 
2

, 1ij t



and 

2

, 1ji t



appear in each equation). We can then remove 
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this redundant terms without affecting the model doing so, dimensions of matrices A
i
and 

B
i
become   1 / 2k k  instead of 

2k . 

This model is general and flexible, and the coefficients are also directly interpretable, but it has 

some drawbacks in applications, the higher number of parameters which equals 

      
2

1 / 2 1 / 2p q k k k k     , however the model will be practicable in practice 

in our study since we use the bivariate case. Another disadvantage is, there exists only sufficient 

conditions on the parameters to ensure that conditional variance matrices H
t
 are positive definite 

almost surely t . 

The restrictions of the model are introduced by Bollerslev, Engle and Wooldridge (1988) such that, 

each component of the covariance matrix H
t
depends only on its own past and past values of 

'X X
t t

as in equation (3.1), that means in the diagonal representation, it is assumed that the 

matrices A
i
and B

i
are diagonal, we call it a diagonal VECH model. 

 

3.2 The Diagonal VGARCH model 

 

This so called DVGARCH model will reduce the number of parameters 

to     1 1 / 2  p q k k and therefore it is still possible to obtain conditions for positive 

definiteness of H
t
t . 

To illustrate the bivariate case, the DVGARCH model is simply: 

Letting 
2

t t
h , 

2 2 2

11, 1, 11 1, 1 11 11, 1

2 2 2

12, 2, 22 1, 1 2, 1 22 12, 1

2 2 2

22, 3, 33 2, 1 33 22, 1

0 0 X 0 0

0 0 X X 0 0

0 0 X 0 0

t t t t

t t t t t t

t t t t

a b

a b

a b

  

   

  

 

  

 

          
          

             
                      

We have  

2 2 2

11, 1, 11 1, 1 11 11, 1
X

t t t t
a b  

 
  

 
2 2

12, 2, 22 1, 1 2, 1 22 12, 1
X X

t t t t t
a b  

  
  

 
2 2 2

22, 3, 33 2, 1 33 22, 1
X

t t t t
a b  

 
  

 

In the bivariate model illustrated here, there are three free parameters in each of the 
1

A  and 
1

B  

matrices and nine parameters (including constants). In the general k variate DVGARCH model 

there are   1 / 2k k  free parameters in each matrix. However, the DVGARCH 

representation seems to be too restrictive since no interaction is allowed between the different 

conditional variances and covariance. 

In order to derive a sufficient condition for the DVGARCH for H
t
 to be positive definite , we 

write the known DVGARCH model in a matrix representation yields 

 1 1 1

'H W + A X X B H 3.2
  

   
t t t t
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where   denotes the element-by-element product of the two matrices. W , A , and B  are all 

k k  parameter matrices. Using Cholesky decomposition of the parameter matrices and from the 

properties of a Hadamard product yields  

 1 1 1

' ' ' 'H WW + AA X X BB H 3.3
  

      
t t t t

 

where 
'WW  , 

'AA  , and 
'BB   are all positive semi-definite and therefore, H

t
 is positive definite 

t , since the initial covariance matrix 
0

H  is also positive definite. 

By writing the parameters matrices in the form of Cholesky decomposition, the positive semi-

definiteness is guaranteed in estimation without imposing any further restrictions. 

By definition we have the operator L as mentioned previously in the univariate case, where 

LX X


i

t t i
and by convention,   2

1 2
A L A L + A L A L   p

p
and 

  2

1 2
B L B L + B L B L   q

q
. Now let 

t
z  our k dimensionali.i.d vector process with 

mean zero and unit variance, knowing that 
t

z  is independent of 
1

F
t

, it follows that 

   1
cov / F cov I


 

t t t n
z z . There exists a VGARCH process X

t
 such that X H tt t

z  

where  1
H cov X / F




t t t
 and  1

F X ,X , .


 
t t t

. 

Assuming that X
t
 is doubly infinite sequence, yields to the following equation for conditional 

covariance matrix, by rewriting equation (3.1) as  

         
1

1

'H B L A L X X 3.4






  
 

i

t t t

i

vech vech  

 

3.3 CCC Model 

Introduced for the first time by Bollerslev, the conditional correlation matrix in this class of models 

is time invariant. We then choose a GARCH-type model for each conditional variance and we 

model the conditional correlation matrix, based on the conditional variances. 

Since the conditional correlation matrix is time invariant, the conditional covariances are therefore 

proportional to the product of the corresponding conditional standard deviations. Hence, 

Definition 3.2 

The CCC (p, q) process is a martingale difference sequence X
t
, relative to a given filtration F

t
, 

whose conditional covariance matrix  1
H cov X / F

t t t
 satisfy 

   t t t ij iit jjtH D RD 3.5    

where              t 11t kktD diag , , 3.6    

and           ijR 3.7   

is a symmetric positive definite matrix with ii 1  , i then off diagonal elements of the 

conditional covariance matrix are defined as  t it jt ijij
H    for i j , 1 i, j k  . 

2

iit is 

defined as univariate GARCH (p, q) model 
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 
qP

2 2 2

t i t i i t i

i 1 i 1

A X B 3.8   

 

     

where   is k 1  vector, 
iA  and 

iB  are diagonal k k  matrices. See Francq and Zakoian 

(2010) for more details. 

 

3.4 DCC Model 

A generalization of the CCC model was proposed by Engle (2002), the so-called DCC is a new 

class of multivariate models which conditional correlation matrix is time-dependent. These models 

are flexible like the previous univariate GARCH and parsimonious parametric models for the 

correlations. 

Definition 3.3 

The DCC process is a martingale difference sequence X
t
, relative to a given filtration F

t
, whose 

conditional covariance matrix  1
H cov X / F

t t t
 satisfy 

 t t t tH D R D 3.9  

where  

   t 1t ktD diag , , 3.10    

and tR is k k time varying correlation matrix of X
t
, 

2

it is defined as univariate GARCH (p, q) 

model. 

i ip q
2 2 2

it i ij t j ij t j

j 1 j 1

X     

 

     

where i , ij , and ij are non-negative parameters for i 1, ,k  , with the usual GARCH 

restriction for non-negativity and stationary being imposed, such as non-negativity of variances and 

i ip q

ij ij

j 1 j 1

1 
 

   . 

In bivariate case, the number of parameters to be estimated equals   k 1 k 4 / 2  . Note that 

tH , being a covariance matrix has to be positive definite, tD is positive definite since all the 

diagonal elements are positive, this ensure tR to be positive definite. Also, all the elements in the 

correlation matrix tR have to be equal or less than one by definition; See Engle (2002) for more 

details. 

 

3.5 Model Estimation 

Estimation of MGARCH models is troublesome, since the number of parameters may be large 

enough also for relative small vector dimension k . 

Statistical properties of multivariate GARCH models are only known for development of statistical 

estimation, it would be desirable to have conditions for strict stationarity and ergodicity of 

multivariate GARCH processes as well as conditions for consistency and asymptotic normality of 

QMLE.  
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Comte and Lieberman (2003) establish asymptotic normality of the QMLE, they provide condition 

for strong consistency and asymptotic normality of the QMLE ̂  

The method of estimation of parameters of 
tR in the DCC model produces consistent but not 

efficient estimators, In order to estimate the parameters of 
tH we use the following log-likelihood 

function L 

    
T

' 1

t t t t

t 1

1
L nlog 2 log H X H X

2
 



     

    
T

' 1 1 1

t t t t t t t t

t 1

1
nlog 2 log D R D X D R D X

2
   



     

      
T

' 1 1 1

t t t t t t t

t 1

1
nlog 2 2log D log R X D R D X

2
   



      

    
T

' 1 1 ' ' 1

t t t t t t t t t t t

t 1

1
nlog 2 2log D X D D X log R R

2
   



       z z z z  

   cL L ,   v  

Thus, the log-likelihood is composed of two parts. The maximization of this function will be done 

in two steps as proposed by Engle (2002). Note that, the estimate of the CCC model requires only 

the first step. The first part of the likelihood function depends on the parameters of the volatility of 

each stock market estimated from the univariate GARCH models. 

    
T

2 ' 2

t t t t

t 1

1
L nlog 2 log D X D X

2
  



   v
 

It is the sum of the log-likelihoods of the individual GARCH models. 

     
2T k

2 it
it 2

t 1 i 1 it

1 X
L log 2 log

2
  

 

 
    

 
v  

The second part of the likelihood function depends on the conditional correlation parameters, 

knowing the coefficients of the volatilities obtained during the first step. In this second phase, the 

standardized residuals are used to estimate the parameters of the dynamics of the correlations. 

   
T

' 1 '

c t t t t t t

t 1

1
L , log R R

2
  



    z z z z . 

4. Empirical Results 

 

4.1 The data 

The data sequences are generated by the same source. Daily closing prices of NSE Equity and KCB 

shares data over a period of 7 years extending from 01/01/2010 to 31/12/2016 with 1756 

observations were used. The Equity and KCB shares are the most traded and most profitable 

companies trading in NSE market. They track the daily performance of the most capitalized 

companies in the sector of Banking among the eight (08) segments listed on the NSE.In order to 

describe the behaviour of NSE return series, we drawn descriptive statistics table for the returns. 

The data are in log-difference form. 
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The summary of the descriptive statistics for the NSE returns series are shown in table 1. As it is 

expected for a time series of returns the mean is close to zero. The return series are both negatively 

skewed, an indication that the NSE data used have symmetric returns. 

 Table1:Summary statistics of NSE return series 

Statistics Equity Group KCB Group Ltd

Observations 1757 1757

Max 0.0946 0.0878

Min -0.1022 -0.1121

Mean 0.00043 0.00022

Variance 0.00037 0.00031

SD 0.0192 0.0176

Skewness -0.093 -0.402

Kurtosis 7.3388 7.541

P-normal        < 5%     < 5%

correlation coef

 corr coef for squared returns

0.2409

0.2803
The kurtosis is greater than three for the normal distribution, this indicates that the underlying 

distribution of the returns are leptokurtic or heavy tailed.  

 

Table 2: Univariate ARCH results. Log-likelihood value 

Model Number of parameters Equity KCB

Observations 1756 1756

GARCH 3 4548.656 4696.95

EGARCH 4 4670.046 4821.672  
 

The series fail the Kolmogorov normality test statistic which rejects normality at the 1% confidence 

level in both cases; that means they have positive excess kurtosis which confirms that the returns 

are effectively leptokurtic or heavy tailed. They are highly correlated, with the correlation 

coefficient equal to 24%, while the corresponding value for squared returns is 28%. This suggests 

that estimating a joint model may yield interesting information on the relationship between the 

stock index data. 

4.2 ARCH estimation 

The univariate ARCH results are reported in Table 2. Several ARCH models were estimated with 

data, we proved that the data returns are stationary with high volatility. The presence of an ARCH 

effect has also been proved using the test for conditional heteroscedasticity and the Ljung-Box test 

confirm the presence of ARCH effect in the residuals returns. In each model, conditional normality 

was assumed and we used the BIC and AIC tests to select the appropriate GARCH model which 

better fit the data. In all cases, the EGARCH model outperforms the GARCH model selected in 

log-likelihood values with the largest difference in log-likelihood values 121 and 124 for both 

Equity and KCB stock index respectively. The coefficients of the univariate model are all 

significant. 

4.3 Multivariate GARCH models  
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Results from the estimation of multivariate GARCH models of the data are presented in Table 3 for 

bivariate data set, DCC model has the best 

 

Table 3:Multivariate GARCH results: Bivariate Log-likelihood values  

Model Number of parameters Stock indices

DVGARCH 9 9274.12

VGARCH 21 8877.301

CCC 9 9284.197

DCC 9 9,502
 

 

performance with the highest log-likelihood value among the GARCH models, and its restricted 

version; the CCC and diagonal VGARCH perform significantly worse and are almost the same, but 

it is up to the user to select the model that he wants to use in portfolio management.A probable 

explanation for that is that the optimization might have converged to local minima. The difference 

in likelihood values is therefore indicative of which model fits better. Non-linear optimization of 

higher parameters model is always difficult, and highlights one of the problems with the MGARCH 

models. 

5. Conclusion 

In summary, we have observed a number of apparent results and most of the models considered 

above are non-nested and model comparison is difficult. Therefore, the results reported in this 

paper support several conclusions, present theoretical and empirical modeling with multivariate 

GARCH models and highlighted their features. Although researchers have built many multivariate 

models, we still face the problems of curse of dimension due to the number of parameters and the 

restrictions on the parameters to ensure the positive definiteness of the covariance matrix. There 

exist several types of multivariate GARCH models and we surveyed their basic construction. We 

considered the VGARCH, diagonal VGARCH, CCC, and DCC models and we used multistep 

maximum likelihood estimation procedures to estimate the models. One of the main findings is that 

conditional correlations exhibit significant changes over time so, we concluded that despite the 

impact of globalization, there still exist opportunities to maximize portfolio returns through 

diversification. Our comparison of the models shows that the best model is DCC, because it 

dominates in log-likelihood value. The greatest challenge remains to compare these results to the 

discrete multivariate stochastic volatility.  
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Appendix A.  

We analyzed daily data on returns of Equity and KCB stocks. We specified one ARCH term and 

one GARCH term for the conditional variance equation of each company. 

Table A1. Estimated coefficients of the diagonal VGARCH model for the stock indices 

C1 C2

Estimate 0.00012 0.00019 0.000098 0.000027 0.000091

Std. Error 0.00041 0.00038 0.000017 0.000014 0.000015

a11 a21 a22 b11 b21

Estimate 0.204 0.055 0.208 0.534 0.523

Std. Error 0.035 0.026 0.033 0.066 0.228

b22

Estimate 0.499

Std. Error 0.063

11 21 22

 

Table A2. Estimated coefficient of the CCC model for the Stock indices 

C1 C2 [,1] [,2] [,1] [,2]

Estimate 0.0001 0.000087 0.215 0.213 0.519 0.506

Std. Error 0.000016 0.000014 0.353 0.034 0.063 0.062

GARCH EstimatesARCH EstimatesC Estimates

 

Table A3. Estimated coefficients of the DCC model for Stock indices. 

[,1] [,2] [,1] [,2] C1 C2

Estimate 0.235 0.275 0.235 0.466 -0.00019 0.00066

Std. Error 0.05 0.053 0.524 0.08 0.00034 0.00031

dcc a dcc b Corr.

Estimate 0.273 0.496 0.168

Std. Error 0.024 0.586 0.027

ARCH Estimates GARCH Estimates C Estimates

 

 

FigureA1.Prediction of Conditional Covariance between the two companies 
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Figure A2. One-step prediction of volatility over the sample 
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